Transient deformation from daily GPS displacement time series: postseismic deformation, ETS and evolving strain rates

Yehuda Bock1, Peng Fang1, Lina Su1, Dara Goldberg1, Angelyn Moore2, Sharon Kedar2, Zhen Liu2, Susan Owen2, Margaret Glasscoe2, Brendan Crowell3

1Scripps Institution of Oceanography
2Jet Propulsion Laboratory
3University of Washington

G42A-02 Time-Dependent Deformation in Geodetic Data: Advances in Detection, Modeling, and Interpretation I
2016 Fall AGU Meeting, San Francisco
December 15, 2016
Postseismic Deformation
\[\sum_{j=1}^{n_k} k_j \left(1 - e^{-\frac{(t_i - T_{kj})}{\tau_j}}\right) H(t_i - T_{kj}) \]

Exponential ("EXP") – mantle process

\[\sum_{j=1}^{n_k} k_j \log \left(1 + \frac{t_i - T_{kj}}{\tau_j}\right) H(t_i - T_{kj}) \]

Logarithmic ("LOG") – afterslip, fault-process

\[\sum_{j=1}^{n_k} \left[1 - \frac{2}{\alpha} \coth^{-1} \left(\frac{t_i - T_{ij}}{e^{\tau_j / \alpha}}\right)\right] H(t_i - T_{kj}) \]

Velocity Strengthening ("COTH"), fault-process

Maxwell Rheology, multi-layer (Devries, Meade 2013)

Burgers Rheology (Wang, Hu, He 2012)

Rate- and State-Dependent Friction (Jiang, Lapusta 2016)
Global & Regional Continuous GNSS Stations Analyzed by SESES
Fault Mechanisms for Earthquakes with Modeled Postseismic Motions
Estimation of Postseismic Parameters through Principal Component Analysis

- Identification Global CMT
- Interpolate Gaps
- Extract Time Series Residuals
- Principal Component Analysis (PCA)
- Iterate Time Constant
 - Apply to All Stations
- Re-estimate velocities & offsets
- Apply Optimal Model to Time Series
 - Post GPS Explorer

Mw 9.0 Tohoku-oki
(2011-03-11)
Postseismic Deformation – 2011 Mw9.0 Tohoku-oki earthquake

Velocity of TSKB

- $k = -32.25$ (log)
- $k = -81.44$ (exp)
- $k = -154.13$ (coth)

Log decay 131 days

- $k = 130.41$ (log)
- $k = 329.17$ (exp)
- $k = 623.61$ (coth)

- $k = 27.18$ (log)
- $k = 68.97$ (exp)
- $k = 129.96$ (coth)
Postseismic Deformation – 2004 Mw6.0 Parkfield Earthquake

LOG
First Mode 96.4%

EXP
First Mode 86.2%

COTH
First Mode 95.1%

RMS = 1.9

RMS = 4.0

RMS = 1.6

Agrees with result of Barbot, Fialko, Bock, 2008 with 3 years of data
Postseismic Deformation – 1991 Mw7.1 Hector Mine Earthquake

M7.1 Hector Mine earthquake, Oct 16, 1991

Log decay time for Hector Mine earthquake (days)

<table>
<thead>
<tr>
<th>Fault Parallel Distance (km)</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>28</td>
<td>28</td>
<td>25</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>175</td>
<td>156</td>
<td>199</td>
<td>177</td>
<td>172</td>
</tr>
<tr>
<td>300</td>
<td>271</td>
<td>225</td>
<td>278</td>
<td>253</td>
<td>245</td>
</tr>
<tr>
<td>400</td>
<td>693</td>
<td>474</td>
<td>628</td>
<td>542</td>
<td>506</td>
</tr>
<tr>
<td>500</td>
<td>1,047</td>
<td>794</td>
<td>856</td>
<td>625</td>
<td>580</td>
</tr>
<tr>
<td>600</td>
<td>976</td>
<td>792</td>
<td>816</td>
<td>632</td>
<td>541</td>
</tr>
</tbody>
</table>
ETS
Examine time-dependent episodic tremor and slow slip in Cascadia subduction zone

- Conventional view of episodic tremor and slip (ETS): slip always accompanied by tremor but not vice versa. Tremor as proxy of slip

- Recent “Tremorless” slip as reported by Bartlow and Welch [2014]

- Examine how slow slip and tremor relate using SESES combined time series and time-dependent slip inversion

- Report results on automated SSE detection, time series modeling and slip/tremor investigation for selected event
A relative strength index (RSI) based transient detection approach

- Use SESES filtered, cleaned detrended time series
- Single station based approach
- Employ financial momentum oscillator RSI to detect deviation above normal variance for E, N, U components
- Use Kurtosis minimization to quantify transient probability

The size of the circles are the normalized average transient probability.

Crowell, Bock, Liu [JGR 2016, in press]
Time Series Modeling

- Initial ETS time based on RSI detection and visual examination

- We perform a grid search to identify the optimal centroid time (t_j) and duration (τ_j) for each ETS event

- Long time span of time series reduces potential trade-off between seasonal terms and transient signals

- Time series that remove inter-ETS velocities, seasonal and offset are used in the modeling

\[
d(t) = a + v \cdot t + c \cdot \sin(2\pi t) + d \cdot \cos(2\pi t) + e \cdot \sin(4\pi t) + f \cdot \cos(4\pi t) + \sum_{i=1}^{m} g_i \cdot H(t - t_i) + \sum_{j=1}^{n} h_j \cdot (1 + \tanh \left(\frac{t - t_j}{\tau_j} \right))
\]
Considerable variability in surface deformation patterns are observed for recurrent SSEs, indicating the complexity of transient source.
Time dependent slip modeling of 2011/06-2011/09 ETS event

- Time-dependent kalman filter approach [McGuire & Segall, 2013; Liu et al., 2015]
- Migrating event with a duration of ~3 months
- Complex slip with and without tremor

Total displacement

Model fit to data at selected station (magenta box, left panel)

Red dashed line: model; Black dots: data
Spatiotemporal slip history of 2011 June-Sept. ETS event

- 2011 June ETS event initiated at the central margin and migrate towards the north.

- There appears “tremorless” slip period of ~2011/07/12 to 2011/07/24

- Tremor tends to overlap high slip area but also occur downdip of high slip or moving slip front at different stages of slip evolution

- Similar “tremorless” slip was also observed in 2014 November event [Liu et al., 2015], prompting revisit of conventional view of “ETS” and its underlying mechanism
Conclusions

• NASA SESES project maintains dynamic reference system based on weekly updated combined JPL and SIO displacement time series

• The SESES time series of ~2500 regional and global stations includes rigorous quality control

• The SESES Earth Science Data Records (ESDRs) are a starting point for analysis of transient deformation (gave examples of postseismic and ETS)

• ESDRs can be found at SOPAC archive and NASA’s CDDIS